
DRAFT 11/29/2005, 10:41 K. KALLIGEROS

Platform identification using
Design Structure Matrices

Konstantinos Kalligeros*, Olivier de Weck, Richard de Neufville
Massachusetts Institute of Technology, Cambridge MA 02139

and Adrian Luckins

BP Exploration & Production, Sunbury, UK

Sixteenth Annual International Symposium of the
International Council On Systems Engineering (INCOSE)

8 - 14 July 2006

Copyright © 2006 Konstantinos Kalligeros. Published and used by INCOSE with permission.

Abstract: This paper introduces a methodology and algorithm for the qualitative identification
of platform components at multiple levels of system aggregation, among variants within a family
of systems. We assume that the architectural concept and the functional requirements for the
variants are pre-determined, and use Sensitivity Design Structure Matrices (SDSM) to represent
the sensitivities between the design variables of the variants. We then introduce a novel
algorithm for the identification of platform variables given the SDSM for each variant. Finally,
the methodology is extended to the qualitative identification of platforms at various levels of
system aggregation, i.e., between systems, subsystems and components. The process is
demonstrated in an automotive vehicle example of platform identification.

Keywords: Design Structure Matrix (DSM), platform, standardization, Design Rules

Introduction
Increasingly, a big contributor to competitive advantage is a firm’s ability to balance between

requirements for highly customized products and systems and standardized platforms. The
motivation for customization comes from necessary change in product portfolios, embracement
of new technology and evolution of product lines to changing consumer requirements. At the
same time, production costs must be driven down using economies of scale, lead times must be
shortened, and inventory must be minimized. Besides static goals such as the above, firms also
strive to minimize risks (Ulrich 1995) and increase flexibility (Suh 2005) to respond to
environmental threats and opportunities. Fricke and Schultz (2005) cite many examples from the
automotive and other industries where product variety has increased over the past 20 years, while
production costs have declined. This is the result of a relatively new and evolving body of
literature, emanating both from the industry and academia, that advances and integrates concepts
and methodologies, traditionally “owned” by disciplinary fields such as systems optimization or
management science. Fricke and Schultz provide an excellent account under the name “Design
for Changeability.” A subset of these methodologies provides a solution approach to address the

* Corresponding author. Email kkall@alum.mit.edu

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 2 of 14

trade-off between customization and differentiation across multiple product lines, and the
minimization of fixed and variable costs. An inclusive name for these methods is product
platforming.

A product platform is a common set of subsystems, components, processes, interfaces etc.
shared by all variants in a product family (Meyer & Lehnerd 1997). Platforms may emerge as
product families evolve; in this case, the platform components and processes are those that are
simply found to be common between variants. Alternatively, platforms may be imposed as a
conscious decision on a collection of variants. In either case, platform components, systems or
processes end up constraining the variants’ design: because of the requirement that a platform
component or process is identical in all variants, customized components are necessarily
designed to be compatible with the platform; indeed, the range of possible (or desirable)
customization in the entire product family is dictated by the platform (de Weck 2006).

For some systems, the choice of the platform systems or processes between variants is pretty
simple: it may be intuitive or emerge naturally from the historical evolution of multiple variants.
Potential platforms are those systems that act as “buses” in some way (Yu et al. 2003), or those
that provide interfaces between other, customized systems. On the other hand, the deliberate
identification of platforms is more difficult in network-like systems or systems in which
platforms are comprised of subsystems and components from various levels of system
aggregation. Platform identification is equally cumbersome in very large and complex systems.

This paper introduces a methodology for the qualitative identification of collections of
subsystems and components that comprise feasible platforms. This contribution is relevant for
systems in which platform identification is not intuitive or historically emergent. It is assumed
that the architectural concept and the specifications for the product variants are given. The
methodology is based on Design Structure Matrices (DSM, Steward 1981, 1991) and specifically
the Sensitivity-DSM (Yassine and Falkenburg, 1999) to model how exogenous effects propagate
through the interdependent components of a system. Related concept was presented in a seminal
work by Sullivan et al. (2001). The main concept in this work is that the elements of the DSM
that are not sensitive, directly or indirectly and within a certain tolerance, to exogenous changes,
are potentially members of the platform collection of components. In short, the platform provides
the Design Rules for the product family (Baldwin & Clark 2000).

The paper develops the concepts by first identifying platforms as collections of design
variables using a novel algorithm. We then take a more qualitative approach to describe how the
methodology can be used to identify platforms on multiple levels of system aggregation. The
methodology is demonstrated using an example from the automotive industry.

Platforms as collections of design variables
All variants in a product family will share some commonality in the arrangement of

components, their interactions, and their mapping between function and form (Martin and Ishii
2002). Variants in a product family thus share a platform architecture, i.e., a common “scheme
by which the function of a product is allocated to physical components” (Ulrich 1995). This
common architecture will most often be reflected in an identical system model between variants
of a product line, i.e., an identical set of equations and variables that describe the system’s
response. Given a common set of variables that describe the family architecture for each variant,
it is possible to represent the architecture of all variants within a product line in a Design
Structure Matrix (DSM).

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 3 of 14

System Representation
DSM’s provide a structured methodology for representing systems and processes. The term

DSM summarizes a variety of different uses of essentially the same structure, i.e., a square
matrix where each row (and the respective column) corresponds to a single “element.”
Interactions between elements are represented as “1” (or another mark, often “x”) in the off-
diagonal entries of the matrix body. Depending on what the elements represent, DSMs are
usually referred to as “component-based,” “variable-based,”1 “activity-based” or “team-based.”
Interactions between components represent material or energy flows or even spatial relationships
in a static system. A symmetric interaction between two variables means that they are coupled
and need to be determined jointly; such interactions do not include any notion of time. Finally,
interactions in activity-based DSMs represent precedence between tasks, therefore the order of
the activities corresponds to the order in which activities are performed (Browning 2001).

A mapping usually exists between component, activity and team-based DSMs (Eppinger and
Salminen 2001): system components are regarded as distinct line items in a work breakdown
structure and are therefore treated as separate design activities. In turn, these design activities are
assigned to separate teams. Furthermore, the relationship between a component-based and a
parameter-based DSM is usually at the level of aggregation in describing a system. Consider for
example a DSM representing the design of a system where each component is fully characterized
by a single parameter: the component-DSM and parameter-DSM for such a representation would
coincide. Establishing these links between the different DSM types will prove explanatory for
the later part of the paper; this section focuses on parameter-based DSMs only.
Consider a system whose response and performance can be fully described using n variables

1 2{ , , }nx x x=x … , which are coupled in a model of equations. The corresponding variable-based
DSM is the square matrix with n rows and columns, whose entries ,i j and ,j i are equal to “1”
(symbolically, (,) (,) 1DSM i j DSM j i= =) if the two variables i and j are coupled. In this
sense, a variable-based DSM is an 2N matrix, and represents the architecture of a system.
Particular values of the variables correspond to variants 1 2{ , , }nx x x∗ ∗ ∗ ∗=x … within the
architecture described by the DSM.

A sensitivity DSM (SDSM) is also a square matrix with n rows and columns. The entry ,i j
of an SDSM, however, represents the normalized sensitivity of parameter i to unit changes in
parameter j in the neighborhood of the particular solution: (,) (/)(/)i j j iSDSM i j x x x x∗ ∗ ∗ ∗= ∂ ∂ . In
other words, entry ,i j represents the percent change in variable i caused by a percent change in
variable j . For this reason, a sensitivity DSM is always more sparsely populated than a variable-
DSM: a variable may depend on another variable, but its sensitivity to changes in the latter may
be zero.

System or product variants exist to cover different commercial, marketing or societal needs
and objectives that are completely exogenous to the system, i.e., design decisions cannot affect
them. Examples of exogenous factors in the automotive industry are the condition of the roads in
the region a vehicle is marketed and the typical weather. Marketing studies can translate
exogenous factors to functional requirements. Functional requirements are performance or
response targets the system has to meet, and as such they depend on both exogenous factors as

1 A DSM whose elements represent scalar variables is usually referred to as a parameter-based DSM. The name
variable-based is used here to avoid confusion with exogenous parameters, defined later.

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 4 of 14

well as the design variables of the system. Using the previous automotive example, a functional
requirement affected both by the road quality as well as design variables is a measure of softness
of a car’s suspension system. Let the functional requirements for system variant ∗x be denoted
by a vector 1 2{ , ,..., }mFR FR FR∗ ∗ ∗ ∗=FR .

The SDSM can be extended to include the vector of functional requirements (Figure 1). The
south-western quadrant of the extended SDSM is populated by the sensitivities of design
variables to exogenous parameters; the main body of the SDSM (south-east quadrant) contains
the sensitivity of design variables to other design variables for the particular solution.

Functional
Requirements

Design
Variables

ji

j i

xx
x x

∂
∂

ji

j i

xFR
x FR

∂
∂

ji

j i

FRx
FR x
∂
∂

Figure 1: Normalized SDSM, extended to include exogenous parameters

Change propagation
Consider a particular solution 1 2{ , , }nx x x∗ ∗ ∗ ∗=x … to the system model, and a small change

∆FR in some of the functional requirements ∗FR on which this solution was based. The
question is to find those design variables that will need to change to facilitate this perturbation in

∗FR , and those that may remain the same.
Assume the system model behaves linearly for the changes in design variables necessary to

achieve a perturbation ∆FR in the functional requirements. Then each design variable ix will
need to change by ix∆ :

1 1

m n
i i

i j s
j sj s

x xx FR x
FR x

∗ ∗
∗ ∗

∗ ∗
= =

∂ ∂
∆ = ∆ + ∆

∂ ∂∑ ∑ (1)

This simply says that the required change in ix is the cumulative change caused by all the
functional requirements and other design variables to which ix is sensitive in the neighborhood
of ix∗ .

If every term in the sums in equation (1) is zero, then ix∆ will be zero. Writing this
separately for each summation we obtain conditions (2) and (3). These conditions are sufficient
but not necessary: in theory, the sum of the terms in equation (1) can be zero without necessarily

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 5 of 14

all the terms being zero.

 0 for all 1...i
j

j

x FR j m
FR
∂

∆ = =
∂

 (2)

 0 for all 1...i
s

s

x x s n
x

∂
∆ = =

∂
 (3)

Conditions (2) and (3) indicate whether the change introduced in the functional requirements
propagates to design variable ix . A change can propagate to variable ix because ix directly
depends on an affected functional requirement, or because ix is sensitive to changes in some
other variable that in turn is sensitive to changes. If both conditions (2) and (3) are satisfied for

ix , then the change does not propagate to variable ix and therefore is common between the
designs that satisfy functional requirements ∗FR and ∗ +∆FR FR . In other words, it is a
platform variable for these designs.

Platform identification
The problem is to find the partitioning of the design vector { , }p c=x x x that contains the

greatest number of platform variables px (and the least number of customized variables cx),

given the functional requirements αFR and βFR corresponding to differences in exogenous
factors affecting the two variants α and β . Given px , the design variables of each variant can
be written as in equation (4).

{ , }

{ , }

{ , }

p c

p c

p c

α α

β β

∗ ∗

=

=

=

x x x

x x x

x x x

 (4)

Consider a variant ∗x designed to functional requirements ∗FR 2. Variant ∗x is essentially an
unknown starting design point, from which variants are examined based on their differences in
functional requirements according to the previous section. If each of the two αx and βx share
the same platform variables with ∗x , then they also share the same platform variables.

According to condition (2), a design variable ix may be a platform variable between ∗x and
αx if

 () 0 for all 1...i
j j

j

x FR FR j m
FR

α ∗

∗

∂
− = =

∂
 (5)

where
∗

⋅ denotes that the quantity is evaluated in the neighborhood signified by ∗ . If condition

(2) applies as well between variants ∗x and βx ,

2 This variant can coincide with α , β or be a completely different design conforming to either functional

requirements
αFR or

βFR . If
α∗ =x x then

αx is meant to be the “base” design and
βx is its evolution, and

vice-versa.

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 6 of 14

 () 0 for all 1...i
j j

j

x FR FR j m
FR

β ∗

∗

∂
− = =

∂
 (6)

then variant ∗x can be operated under either functional requirements αFR or βFR , and design
variable ix∗ will not be directly impacted by this change. This is shown by subtracting condition
(6) from (5):

 () 0 for all 1...i
j j

j

x FR FR j m
FR

β α

∗

∂
− = =

∂
 (7)

Similarly, condition (3), written for design variable ix , between variants ∗x and βx becomes

 () 0 for all 1...i
s s

s

x x x s n
x

β ∗

∗

∂
− = =

∂
 (8)

Written for design variable ix , between variants ∗x and αx , condition (3) becomes

 () 0 for all 1...i
s s

s

x x x s n
x

α ∗

∗

∂
− = =

∂
 (9)

Subtracting (9) from (8) yields the condition for insensitivity of variable ix∗ to changes in any
other variable in the range β α−x x :

 () 0 for all 1...i
s s

s

x x x s n
x

β α

∗

∂
− = =

∂
 (10)

Together, equations (7) and (10) are the sufficient conditions for design variable ix∗ to be part
of the shared platform between variants ∗x , αx and βx . For each j , condition (7) will be true if
(a) 0j jFR FRβ α− = , i.e., functional requirement j does not change despite changes in
exogenous factors, or (b) if the partial derivative []i jx FR ∗∂ ∂ is zero. Therefore, platform
components can only be sensitive to changes in functional requirements that are invariant to
changes in exogenous factors. Likewise, condition (10) will be true for variable s if 0s sx xβ α− =
or

*
0i sx x∂ ∂ = . Therefore, platform components can only be sensitive to unit changes in the

design specifications of other platform components. Conditions (11) and (12) define the set of
platform variables. Condition (11) says that all platform variables must be insensitive to changes
in functional requirements between the variants considered. Condition (12) says that platform
variables must be insensitive to customized variables for the variants considered.

*

0 ,p

c

x
c p

FR
∂

= ∀
∂

 (11)

*

0 ,p

c

x
c p

x
∂

= ∀
∂

 (12)

A sensitivity DSM of the variant ∗x can be partitioned to isolate the platform variables, as
Figure 2 shows. The functional requirements that change between the variants are listed first,
followed by the platform variables. Last are the customized design variables. Conditions (11)

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 7 of 14

and (12) imply that the blocks East and West of the diagonal block of platform variables must be
equal to zero by definition.3

Changing
functional
requirements

Platform design
variables and
functional
requirements

Changing
design variables
and functional
fequirements

0p

c

x
x

∂
=

∂
0p

c

x
FR
∂

=
∂

px

cx

Figure 2: Invariant Design Rules on an S-DSM

The re-arrangement of the SDSM in Figure 2 shows why the platform variables provide the
design rules for the variants in the product family. Design rules is the name coined by Baldwin
and Clark (2000) to refer to the system components or variables that are established first in the
design process and dictate the design of other components of variables. Therefore, design rules
are unaffected by other variables, while at the same time they constrain the design of other
variables. Platform components are thus design rules as the block on their East is zero and the
block right below them, denoting sensitivity of the customized variables to platform variables, is
generally non-zero.

Algorithm for platform identification
This section presents an algorithm for the identification of the largest set of platform

variables. The algorithm operates on the SDSM of Figure 1 and partitions it in such a way so that
the blocks East and West of the block of platform variables are equal to zero within tolerance
limits (Figure 2).

Conditions (7) and (10) or equations (11) and (12) cannot be used directly for determining
the platform variables between variants. If conditions (7) and (10) are satisfied, a design variable
i is necessarily part of a platform between variants αx and βx . However, conditions (7) and
(10) are only useful for checking whether a design variable belongs to the platform subset, not
locating the platform subset. Also, equations (11) and (12) that hold for all platform and
customized variables, are not directly useful for determining what the partitioning of the design
vector should be, given the sensitivity DSM at a solution ∗x and the functional requirements of
the variants, αFR or βFR .

Table 1 describes the algorithm steps. The algorithm involves a running list kΠ (subscript k

3 Or almost equal to zero, depending on the accepted tolerance.

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 8 of 14

for iteration k) of variables, initially consisting of all elements of the SDSM that are directly
insensitive to the changing functional requirements. By the end of the first loop (Step 2), kΠ
contains the maximum possible number of platform variables. In this kΠ , it is very likely that
some variables are sensitive to changes in customized variables (not in kΠ). On a second loop,
each potential platform variable is examined and removed from kΠ if it is sensitive to a
customized variable. The algorithm terminates when the IDR list remains unchanged, or if kΠ is
empty.

Table 1: Algorithm for the location of invariant design rules
STEP Description Variables
1 Establish running list of variables that

are potential design rules kΠ

2 Examine S-DSM element i . If i is not
affected by changes in the changing
functional requirements, then add
element i to kΠ .

3 Repeat Step 2 for next element until
all elements have been examined.

4 Store running kΠ kΠ contains maximum
set of potential design
rules

5 Check each element i against each
element j . If

, 1i jSDSM = and

i kx ∈Π and

j kx ∉Π

then remove element i from kΠ and
go to Step 6. Otherwise, examine for
next element 1j j= + .

{ }k k ixΠ =Π −

6 Repeat step 4 for next element i until
all elements have been examined.

7 If

1k k−Π =Π or kΠ =∅
then the algorithm has converged;
terminate. Otherwise, go to Step 4

The algorithm in Table 1 is guaranteed to find the largest set of platform variables, not just

any set. To show this, it is enough to show that kΠ at iteration k always contains the largest set
of platform variables px .

When the first loop is finished, at step 2, the running list kΠ indeed contains the largest px .

To show this, consider the complementary set to kΠ , kΠ . kΠ contains all variables that do not
satisfy condition (11). Since the variables in px must satisfy both conditions (11) and (12), it

follows that kΠ is the smallest possible cx ; therefore, kΠ contains the largest possible set of

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 9 of 14

platform variables. So, p k⊂Πx .

The second loop (steps 4-6) starts with kΠ , and in every iteration k an element is removed
so that 1k k−Π ⊆Π . Because in each iteration the element removed does not satisfy condition (12)
it also follows that

 1p k k−⊆Π ⊆Πx (13)
From equation (13) it follows that the first feasible kΠ will be the largest set of platform
variables.

DRAFT: Platform identification at higher system levels:
application

In the final part of this paper we extend the previously presented concepts to a higher level of
system aggregation, so that the process can be used as a design management tool. We illustrate
such use of the concepts with an example from the automotive industry.

A variable-based DSM can be clustered in so that subsystems and components are defined
(Figure 3). The clustering of a DSM is not unique: drawing boundaries around sets of design
variables and considering these sets as subsystems involves a trade-off: the larger the
subsystems, the fewer interactions are left outside the boundaries; the smaller the subsystems, the
more interactions exist between their variables and outside their boundaries. Similarly, variables
can belong to two or more systems simultaneously (so that these overlap, e.g., engine and
transmission systems in Figure 3); alternatively, the common variables can be regarded as a
separate “link” subsystem, interacting with both systems 1 and 2. For this paper, it is assumed
that some clustering of the design variables into subsystems and components is known and
accepted within the developing organization.4

Figure 4 shows the aggregation (clustering) of many hundreds of design variables for an
automotive vehicle into 11 most important to characterize individual subsystems. Specifically,
the powertrain is characterized by the fuel tank capacity (FC) and engine displacement (ED). The
chassis is defined by the wheel track (WT5), wheel base (WB) and ground clearance (GC).
Overall total length (LT) and height (HT) are associated with the body, which can be of type
BOF or BFI, while the wheels are characterized by tire width (TW) and diameter (TD).

These design variables describe the subsystems that together achieve the core functionalities
of an automobile: propelling, housing and towing. Propelling is the ability of the vehicle to roll
on a surface as well as to accelerate and decelerate on command. The primary vehicle modules
responsible for this process are the powertrain, the chassis and the wheels. The powertrain
comprises, among other parts the fuel tank, engine, transmission, drive shaft and differential. The
chassis is made up primarily of the structural underbody (carriage), the braking system as well as
the suspension system. The wheels allow the vehicle to roll and transmit the torque generated by
the engine to the road. The body of the automobile houses the passengers and cargo, thus
shielding them from wind and external elements. It also reduces drag and contributes
significantly to the external aesthetic appeal of the vehicle (styling). In a “body-on-frame” (BOF)
architecture the chassis and body are clearly separated, whereas in a body-frame-integral (BFI)
architecture they are more tightly integrated (Whitney 2004). Finally, the towing capacity (TC)

4 See Sharman et al (2002) and Yu et al (2003) for a discussion on clustering DSM’s of subsystems and components.
5 We define WT as the front wheel track in this paper. The difference between front and rear wheel track is usually
very small in passenger cars, but can be more significant in trucks.

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 10 of 14

of a vehicle is primarily driven by the power of the engine and the ability of the chassis to
transmit the towing load from the hitch through the frame and on to the wheels. These statements
reflect a mapping from internal functions to parts and assemblies. Creating this function-to-form
mapping is the function of product architecture (Crawley 2001).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1 ENGINE POWERTRAIN AUTOMOBILE
2
3
4
5 TRANSMISSION
6
7
8
9

10 DIFFERENTIAL
11
12
13 DRIVE SHAFT
14
15
16
17
18 FUEL TANK
19
20
21
22 CHASSIS
23
24 SUSPENSION
25
26
27
28
29
30 BRAKING
31
32
33
34
35
36 BODY
37
38
39
40
41
42 WHEELS
43
44
45

Figure 3: Clustering of a 45-variable DSM into 7 systems

GC

HT

ED

Wheels
(TW, TD)

TC

Chassis
FC

WT

Trailer

Trunk (CV)Body (PV)

Powertrain

LT
WB

Figure 4: Vehicle subsystem-level design variables

In turn, the core functionality of an automobile can presumably be characterized by certain
quantities, the functional attributes (or functional requirements), e.g., passenger volume (PV),
cargo volume (CV), towing capacity (TC), fuel economy (FE) and acceleration (AC). These

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 11 of 14

functional requirements represent the value of the product system to the user or the buyer, and
they will differ from one vehicle to another as vehicles are intended to satisfy different customers
with different needs in different geographical and cultural settings. Unfortunately, functional
requirements are seldom mapped one-to-one to design variables6.

In fact, functional requirements will affect (and be determined as a function of) multiple
design variables as Figure 5 shows. In Figure 5 the functional requirements and aggregate design
variables appear on the same DSM just as Figure 2 above. Also, interactions represent an
aggregate representation of the interactions between subsystem design variables (shown in
Figure 3), just as the line items in Figure 5 are an aggregate representation of the cluster of
design variables in Figure 3.

FR DV Label PV CV TC FE AC FC ED WT WB GC HT LT TW TD HP CW
FR1: Passenger Volume PV 1 1 1 1 1
FR2: Cargo Volume CV 1 1 1 1 1
FR3: Towing Capacity TC 1 1 1 1 1 1 1
FR4: Fuel Economy FE 1 1 1 1 1 1
FR5:Acceleration AC 1 1 1
X1: Fuel Capacity FC 1
X2: Engine Displacement ED 1 1
X3: Wheel Track WT 1 1 1 1 1
X4: Wheel Base WB 1 1 1 1
X5: Ground Clearance GC 1 1
X6: Height HT 1 1 1 1 1
X7: Length Overall LT 1 1 1
X8: Tire Width TW 1
X9: Tire Diameter TD 1 1
X10: Horsepower Rating HP 1 1 1 1 1
X11: Curb Weight CW 1 1 1 1 1 1 1 1

Figure 5: Component-based DSM, extended to include functional requirements
Formulating the Sensitivity-DSM for a specific variant within the given architectural

concept, again requires that the interaction in row i and column j be interpreted as “the change
necessary to line item i because of a unit change in line item j . In other words, if the design
variables of component i are not (significantly) constraining those of component j in the
neighborhood of the specific solution in mind, then the entry ,i j should be zero.

With this convention, all the concepts developed in the first part of the paper are transferable
to component-based DSM’s; the difference is limited to the way sensitivities are quantified. In
the variable-based SDSM, sensitivity is objectively defined to be the relative change in one
variable as a consequence of a change in another. In the component-based SDSM, sensitivity is
subjectively defined as the change necessary in one component as a consequence of change in
another. In other words, since components are described by many variables, designers should
simply use judgment as to whether the design of a component influences the design of another.

Multi-level platforms
A component-level SDSM in the form of Figure 5 can be partitioned according to the

algorithm presented here, so that the platform subsystems are isolated from the customized ones
for a collection of variants. Suppose that functional requirements 5 and 6 changed between
variants, and that such a partitioning resulted in the SDSM of Figure 6, with subsystems 1, 2 and
3 as part of the platform.

6 A system where such mapping was possible would be an “uncoupled” design (Suh 1990).

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 12 of 14

FR
5

FR
6

FR
1

FR
2

S
U

B
S

Y
S

TE
M

 1
S

U
B

S
Y

S
TE

M
 2

S
U

B
S

Y
S

TE
M

 3
FR

3
FR

4
S

U
B

S
Y

S
TE

M
 4

S
U

B
S

Y
S

TE
M

 5

FR5
FR6
FR1
FR2

SUBSYSTEM 1
SUBSYSTEM 2
SUBSYSTEM 3

FR3
FR4

SUBSYSTEM 4
SUBSYSTEM 5

Figure 6: Component-based SDSM, partitioned to separate platform subsystems

According to this example, subsystems 4 and 5 are entirely customized between variants,

whereas in reality, there may be components within subsystems 4 and 5 which can be identical.
In other words, the change in the design of subsystems 4 and 5, necessary to accommodate the
difference in functional requirements may be accomplished by only changing parts of these
subsystems, not the entire subsystems.

Consider for example subsystem 4, and assume it is composed of 4 components. By
exploding subsystem 4 into its components, and accordingly filling out the sensitivity
information in the SDSM, it is possible to re-run the algorithm above to identify platform
components within subsystem 4 (Figure 7 and Figure 8).

FR5
FR6
FR1
FR2

SUBSYSTEM 1
SUBSYSTEM 2
SUBSYSTEM 3

FR3
FR4

COMPONENT 4-1
COMPONENT 4-2
COMPONENT 4-3
COMPONENT 4-4

SUBSYSTEM 5

Figure 7: Partitioned SDSM, with subsystem 4 exploded into components

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 13 of 14

FR5
FR6
FR1
FR2

SUBSYSTEM 1
SUBSYSTEM 2
SUBSYSTEM 3

COMPONENT 4-1
COMPONENT 4-2

FR3
FR4

COMPONENT 4-3
COMPONENT 4-4

SUBSYSTEM 5
Figure 8: Re-partitioned SDSM, with platform including subsystems and components

The component-based implementation of this methodology enables a multi-disciplinary team

to examine…

[To be completed]

Discussion
[To be completed]

References
Baldwin, C.Y. and Clark, K.B. Design Rules Vol. 1 The Power of Modularity. MIT Press,

Cambridge MA, 2000.
Biegler, L., Grossmann, I. and Westerberg, A. Systematic methods of chemical process design,

Prentice Hall international Series in the Physical and Chemical Engineering Sciences, Upper
Saddle River, N.J,1997. ISBN: 0-13-492422-3

Browning, T.R., Applying The Design Structure Matrix To System Decomposition And
Integration Problems: A Review And New Directions. IEEE Transactions On Engineering
Management 48(3), August 2001 pp. 292-306

de Weck, O.L., Determining Product Platform Extent, pp. 241-301 in “Product Platform and
Product Family Design, Methods and Applications,” Simpson T.W., Siddique, Z. and Jiao, J.
(Editors). Springer Science, New York, NY 2006. ISBN: 0-387-25721-7

Crawley E., “Systems Architecture”, Course Notes ESD.34/16.882, Massachusetts Institute of
Technology, 2001

Eckert, C., Clarkson, P.J. and Zanker, W. Change and customization in complex engineering
domains. Research in Engineering Design 15, 2004 pp. 1-21

Eppinger, S.D. and Salminen, V. Patterns of product development interactions. International
Conference on Engineering Design, Glasgow, August 21-23, 2001

Fricke, E. and Schultz, A.P.. Design for Changeability (DfC): Principles to Enable Changes in
Systems Throughout their Entire Lifecycle. Systems Engineering 8(4), 2005, pp. 342-359

Gonzalez-Zugasti, J.P., Otto, K.N. and Baker, J.D. Assessing value in platformed product family
design. Research in Engineering Design 13, 2001, pp. 30-41.

Kokkolaras, M., Fellini, R., Kim, H.M. and Papalambros, P.Y. Analytical Cascading in Product
Family Design, pp. 226-240 in “Product Platform and Product Family Design, Methods and
Applications,” Simpson T.W., Siddique, Z. and Jiao, J. (Editors). Springer Science, New

Platform identification using DSM K. Kalligeros et al.

DRAFT 11/29/2005, 10:41 page 14 of 14

York, NY 2006. ISBN: 0-387-25721-7
Martin, M.V. and Ishii, K. Design for Variety: Developing Standardized and Modularized

Product Platform Architectures. Research in Engineering Design 13, 2002. pp. 213-235,
Meyer, M.H. and Lehnerd, A.P. The Power of Product Platforms, The Free Press, New York

1997
Parkash, S., Refining processes handbook ISBN: 0-7506-7721-X, Elsevier Publishing, Boston

MA, 2003
Pimmler, T. U. and Eppinger, S. D., Integration Analysis of Product Decompositions, in Proc.

ASME 6th Int. Conf. on Design Theory and Methodology, Minneapolis, MN, 1994.
Sharman, D.M., Yassine, A.A. and Carlile, P. Characterizing modular architectures. Proceedings

of International Design Engineering Technical Conferences ASME 2002, Design Theory
Methodology Conference, Montreal, Canada, September 29-October 2, 2002

Simpson T., Product platform design and customization: status and promise. Artificial
intelligence for Engineering design, analysis and manufacturing 18, 2004, pp.3-20

Simpson, T.W. and D’Souza, B. Assessing variable levels of platform commonality within a
product family using a multiobjective genetic algorithm. 9th AIA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, 4-6 September 2002, Atlanta, Georgia.

Simpson, T.W. Methods for Optimizing Product Platforms and Product Families, in “Product
Platform and Product Family Design, Methods and Applications,” Simpson T.W., Siddique,
Z. and Jiao, J. (Editors). Springer Science, New York, NY, 2006, ISBN: 0-387-25721-7

Steward, D. Planning and Managing the Design of Systems, Proceedings of the Portland
International Conference on Management of Engineering and Technology, Portland, OR,
USA 27-31 October 1991.

Steward, D. System Analysis and Management: Structure, Strategy and Design, Petrocelli
Books, New York, 1981

Suh, E.S., Flexible Product Platforms, PhD Thesis, Massachusetts Institute of Technology,
Engineering Systems Division, Cambridge MA, 2005

Suh, N., The principles of Design. Oxford University Press, New York 1990
Sullivan, K.J., Griswold, W.G. and Ben Hallen, Y.C. The Structure and Value of Modularity in

Software design. Proceedings, ESEC/FSE Conference, Vienna, Austria, 2001.
Ulrich, K., The role of product architecture in the manufacturing firm, Research Policy 24, 1995
Yassine, A.A. and Falkenburg D.R., A Framework for Design Process specifications

management, Journal of Engineering Design 10(3), 1999 pp. 223-234
Yu, T.L., Yassine, A.A and Goldberg D.G. A Genetic Algorithm For Developing Modular

Product Architectures, Proceedings of DETC ’03, ASME 2003 International Design
Engineering Technical Conferences. Computers and Information in Engineering Conference
Chicago, Illinois USA, September 2-6, 2003

Whitney, D., Mechanical Assemblies: Their Design, Manufacture, and Role in Product
Development, Oxford University Press, 2004

